725 research outputs found

    Pseudo Goldstones at Future Colliders from the Extended Bess Model

    Full text link
    We consider the production of the lightest pseudo-Goldstone bosons at future colliders through the vector resonances predicted by the extended BESS model, which consists of an effective lagrangian parametrization with dynamical symmetry breaking, describing scalar, vector and axial-vector bound states in a rather general framework. We find that the detection of pseudo-Goldstone pairs at LHC requires a careful evaluation of backgrounds. For e+e- collisions in the TeV range the backgrounds can be easily reduced and the detection of pseudo-Goldstone pairs is generally easier.Comment: 17 pages and 12 figures (included as a uuencoded tar file), LaTeX (style article), UGVA-DPT 1994/03-84

    New vector bosons in the electroweak sector: a renormalizable model with decoupling

    Get PDF
    A linear realization of a model of dynamical electroweak symmetry breaking describing additional heavy vector bosons is proposed. The model is a SU(2)_L x U(1) x SU(2)_L' x SU(2)_R' gauge theory, breaking at some high scale u to SU(2)_weak x U(1)_Y and breaking again in the standard way at the electroweak scale v to U(1)_(em). The model is renormalizable and reproduces the Standard Model in the limit u\to infinity. This decoupling property is shown to hold also at the level of radiative corrections by computing, in particular, the epsilon parameters.Comment: 39 pages, 16 Figures, Late

    An Extension of the Electroweak Model with Decoupling at Low Energy

    Get PDF
    We present a renormalizable model of electroweak interactions containing an extra SU(2)L′⊗SU(2)R′SU(2)'_L\otimes SU(2)'_R symmetry. The masses of the corresponding gauge bosons and of the associated Higgs particles can be made heavy by tuning a convenient vacuum expectation value. According to the way in which the heavy mass limit is taken we obtain a previously considered non-linear model (degenerate BESS) which, in this limit, decouples giving rise to the Higgsless Standard Model (SM). Otherwise we can get a model which decouples giving the full SM. In this paper we argue that in the second limit the decoupling holds true also at the level of radiative corrections. Therefore the model discussed here is not distinguishable from the SM at low energy. Of course the two models differ deeply at higher energies.Comment: 13+2 pages, LaTe

    An alternative model for the electroweak symmetry breaking sector and its signature in future e-gamma colliders

    Full text link
    We perform a preliminary study of the deviations from the Standard Model prediction for the cross section for the process eγ→νeWγe \gamma \rightarrow \nu_e W \gamma. We work in the context of a higgsless chiral lagrangian model that includes an extra vector resonance VV and an anomalous γWV\gamma W V coupling. We find that this cross section can provide interesting constraints on the free parameters of the model once it is measured in future eγe \gamma colliders.Comment: LaTex , 14 pages, 5 figures not included but available as postscript files upon request, NUB-3086/94-T

    Tests for a Strong Electroweak Sector at Future e^+e^- High Energy Colliders

    Get PDF
    The study of the scattering at high energy of the gauge bosons W and Z, in particular longitudinally polarized W and Z, can clarify the mechanism of spontaneous symmetry breaking in the Standard Model of the electroweak interactions. Different models of strong electroweak sector, based on the effective lagrangian approach are briefly reviewed. They include models with no resonance, with scalar resonance, additional vector and axial-vector resonances. The effective Lagrangians are derived from the chiral symmetry of the symmetry breaking sector. Limits on these models from existing measurements, mainly LEP and Tevatron, are considered. We study also direct and indirect effects of the new interactions at high energy future e^+e^- linear colliders, through WW scattering and the direct production of these new vector gauge bosons.Comment: 74 pages, 19 figures and 4 tables included, Latex, uses epsf, to appear in La Rivista del Nuovo Cimento, some minor change

    Heating (Gapless) Color-Flavor Locked Quark Matter

    Full text link
    We explore the phase diagram of neutral quark matter at high baryon density as a function of the temperature T and the strange quark mass Ms. At T=0, there is a sharp distinction between the insulating color-flavor locked (CFL) phase, which occurs where Ms^2/mu < 2 Delta, and the metallic gapless CFL phase, which occurs at larger Ms^2/mu. Here, mu is the chemical potential for quark number and Delta is the gap in the CFL phase. We find this distinction blurred at nonzero T, as the CFL phase undergoes an insulator-to-metal crossover when it is heated. We present an analytic treatment of this crossover. At higher temperatures, we map out the phase transition lines at which the gap parameters Delta_1, Delta_2 and Delta_3 describing ds-pairing, us-pairing and ud-pairing respectively, go to zero in an NJL model. For small values of Ms^2/mu, we find that Delta_2 vanishes first, then Delta_1, then Delta_3. We find agreement with a previous Ginzburg-Landau analysis of the form of these transitions and find quantitative agreement with results obtained in full QCD at asymptotic density for ratios of coefficients in the Ginzburg-Landau potential. At larger Ms^2/mu, we find that Delta_1 vanishes first, then Delta_2, then Delta_3. Hence, we find a "doubly critical'' point in the (Ms^2/mu,T)-plane at which two lines of second order phase transitions (Delta_1->0 and Delta_2->0) cross. Because we do not make any small-Ms approximation, if we choose a relatively strong coupling leading to large gap parameters, we are able to pursue the analysis of the phase diagram all the way up to such large values of Ms that there are no strange quarks present.Comment: 24 pages; 22 figures; typos in labelling of Figs. 7, 20 correcte

    Indirect effects of new resonances at future linear colliders

    Get PDF
    In this paper we consider a general SU(2)L⊗SU(2)RSU(2)_L\otimes SU(2)_R invariant Lagrangian describing scalar, vector and axial-vector resonances. By expanding the WW and the ZZ scattering amplitude up to the fourth order in the external momenta we can compare the parameters of our Lagrangian with the ones used in the effective chiral Lagrangian formalism. In the last approach there has been a recent study of the fusion processes at future e^+e^- colliders at energies above 1 TeV. We use these results to put bounds on the parameter space of our model and to show that for the case of vector resonances the bounds obtained from the annihilation channel in fermion pairs are by far more restrictive, already at energies of the order of 500 GeV.Comment: 14 pages, Latex, 1 fi

    A linear moose model with pairs of degenerate gauge boson triplets

    Full text link
    The possibility of the existence of a strongly interacting electroweak symmetry breaking sector, as opposed to the weakly interacting light Higgs of the Standard Model, is not yet ruled out by experiments. In this paper we make an extensive study of a deconstructed model (or ``moose'' model) providing a possible effective description of such a strong symmetry breaking sector, and show its compatibility with experimental data for a wide portion of the model parameters space. The model is a direct generalization of the previously proposed D-BESS model.Comment: Latex file, 17 pages, 2 figures, published versio
    • …
    corecore